Robust Local Problem Error Estimation for a Singularly Perturbed Problem on Anisotropic Finite Element Meshes

نویسندگان

  • Gerd Kunert
  • G. KUNERT
چکیده

Singularly perturbed problems often yield solutions with strong directional features, e.g. with boundary layers. Such anisotropic solutions lend themselves to adapted, anisotropic discretizations. The quality of the corresponding numerical solution is a key issue in any computational simulation. To this end we present a new robust error estimator for a singularly perturbed reaction–diffusion problem. In contrast to conventional estimators, our proposal is suitable for anisotropic finite element meshes. The estimator is based on the solution of a local problem, and yields error bounds uniformly in the small perturbation parameter. The error estimation is efficient, i.e. a lower error bound holds. The error estimator is also reliable, i.e. an upper error bound holds, provided that the anisotropic mesh discretizes the problem sufficiently well. A numerical example supports the analysis of our anisotropic error estimator. Mathematics Subject Classification. 65N15, 65N30, 35B25. Received: January 22, 2001. Revised: July 26, 2001.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerische Simulation Auf Massiv Parallelen Rechnern Error Estimation for Anisotropic Tetrahedral and Triangular Nite Element Meshes

Some boundary value problems yield anisotropic solutions, e.g. solutions with boundary layers. If such problems are to be solved with the nite element method (FEM), anisotropically reened meshes can be advantageous. In order to construct these meshes or to control the error one aims at reliable error estimators. For isotropic meshes many estimators are known, but they either fail when used on a...

متن کامل

Numerische Simulation auf massiv parallelen Rechnern

The paper deals with a singularly perturbed reaction diffusion model problem. The focus is on reliable a posteriori error estimators for the H1 seminorm that can be applied to anisotropic finite element meshes. A residual error estimator and a local problem error estimator are proposed and rigorously analysed. They are locally equivalent, and both bound the error reliably. Furthermore three mod...

متن کامل

Sonderforschungsbereich 393 Parallele Numerische Simulation für Physik und Kontinuumsmechanik

A singularly perturbed reaction diffusion problem is considered. The small diffusion coefficient generically leads to solutions with boundary layers. The problem is discretized by a vertex-centered finite volume method. The anisotropy of the solution is reflected by using anisotropic meshes which can improve the accuracy of the discretization considerably. The main focus is on a posteriori erro...

متن کامل

A Posteriori Error Estimation for a Finite Volume Discretization on Anisotropic Meshes

A singularly perturbed reaction-diffusion problem is considered. The small diffusion coefficient generically leads to solutions with boundary layers. The problem is discretized by a vertex-centered finite volume method. The anisotropy of the solution is reflected by using anisotropic meshes which can improve the accuracy of the discretization considerably. The main focus is on a posteriori erro...

متن کامل

An Optimal Uniform a Priori Error Estimate for an Unsteady Singularly Perturbed Problem

We focus ourselves on the analysis of the solution of unsteady linear 2D singularly perturbed convection–diffusion equation. This type of equation can be considered as simplified model problem to many important problems, especially to Navier– Stokes equations. The space discretization of such a problem is a difficult task and it stimulated development of many stabilization methods (e.g. streaml...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001